Life of Fred Oce Cream

Stanley F. Schmidt, Ph.D.

PD

Polka Dot Publishing

Ot Ovate Before Ore Begin Life of Fred: Ore Cream

Grades, diplomas, trophies, degrees, money, pats on the head, extra time watching television, memberships in honor societies, math ribbons, valedictorian, applause, student of the week, the "I can do all the honey cards in less than 57 seconds" button, the Fields Medal,* assistant professor, associate professor, full professor, finishing a three-unit course in British literature-these are all performance goals.

Mastering the multiplication tables, figuring out how to compute $\sum_{i=1}^{6} \mathrm{i}$, understanding the differences between a formal letter and a personal letter, learning where Cypress is on a map of the Mediterranean Sea or which two countries make up the Iberian Peninsula, or how to count back change**-these are all learning goals.

There is a world of difference between performance goals and learning goals.

The only way that they are alike is that they are both pleasurable.

[^0]
Perfarmance Goals

If you have just been hired at Harry's Hamburgers, all day long you will flip hamburgers, and you will ask customers, "Would you like fries with that?" You put in the hours, and they offer you the rewards of salary ($10 \phi /$ hour), raises ($11 \phi /$ hour), and titles (Junior Associate Team Leader).

Many math curricula operate the same way. All day long you do routine problems, and you get the gold stars, a diploma, and the grade.

Learning Gaals

You learn for the joy of learning. That's why kids play with toys. They don't do it to earn stuff. No one needs to get external encouragement to go play on the swings and slides.

WHAT DO YOU WANT FOR YOUR CHILD?

Is the whole point to get through the book? This is the classic performance goal. Does your praise revolve around how many were answered correctly or how fast the pages were turned? Do you offer a "paycheck" in the form of treats? If so, when they grow up they will be good little workers at Harry's Hamburgers.

Or is the whole point that the book goes through them? Do you encourage discussion of the things that are being learned? Is learning where the joy is?

Kids with performance goals want easy successes. If they encounter non-routine problems, they want to cry or quit. Working hard means that they are dumb.

For kids with learning gaals, exertion is positive. They don't blame anything when they hit a problem that takes 15 minutes to figure out. It's part of the road to mastery. You have seen it when kids are playing with little plastic blocks. They will spend hours fiddling with them.

Mathematics is not easy but neither is water skiing or backpacking. The whole point is to enjoy the difficulties and challenges-not to say that you have done it.

At the dinner table, talk about what Fred is doing, not about how many lessons were finished.

Contents

Chapter 1 Sunshine 13sweet-smelling sleeping bagcounting by foursremembering six times eightstationary vs. stationerythe big question in arithmetictwo-digit multiplicationwhy a pound of hamburger weighs more than apound of gold
Chapter 2 Trimmed Down Table. 19
learning up to 30×30 roosters and egg-laying easy way to learn 7×8 a clean desktop sigma notation
Chapter 3 On His Desk. 25
pronouncing French words that end in t subtracting ounces from pounds forestland in the United States what five-year-olds think is funny vs. what twenty-five-year olds think is funny what isn't news hyperbole isn't lying
Chapter 4 Mail. 31bar graphsletter openers for nine-month-oldswriting formal letterscapitalization in closing salutationspersonal letterselements of a set
Chapter 5 An Opportunity. 37
special delivery emails why Stan couldn't fly to Kansas
elapsed time
ordered pairs, first and second coordinates numbers vs. numerals
Chapter 6 Ties \& Shoes. 43
a ways to do one thing and b ways to do a second imply $a b$ ways to do both.
why the times sign (x) is not used in algebra how to polish leather shoes subtracting minutes from hours
Chapter 7 A Map. 49
artists looking at a map war historians looking at a map mathematicians looking at a map lovers of cheese looking at a map historians of literature looking at a map the promised land vs. Wisconsin easy way to remember 6×9 agitating one's endoplasmic reticulum figuring out what "the land of milk and honey" might really have meant subtracting inches from feet
Chapter 8 Sand Castles in Cypress 55
where Cypress is located on a map Betty's attempt to get Fred to eat something 87 flavors and 6 kinds of cones the cardinality of the set of all ice cream flavors beginning with the Greek letter alpha (á)
Chapter 9 The Right Machine. 61
explicit vs. implicit
Iberian Peninsula
where to find an ibex
two inches ≈ 5 centimeters selecting an ice cream maker-six questions seconds, minutes, and hours in the metric system
Chapter 10Chapter 11 Seat Belts73where not to ride if you can't fit in the cargraphing ordered pairswhy you shouldn't park on the sidewalksubtracting ounces from gallons
Chapter 12 PieOne. 79
perimeter of a building when not all the dimensions are given
why math was created area of a rectangle a poor way to teach ice cream eating
Chapter 13 Before Four. 85
why Stanthony thought Chico Marx was Italian division by two-digit numbers speaking ironically
Hooke's law
slope of a line
Chapter 14 Starting the Machine 91
different scales on a graph given $(40,3)$ and $(280,21)$ and estimating $(800, ?)$ domain and codomain how many digits should be in a serial number
Chapter 15 Booths at the Conference. 97
uses for pizza buttons counting back change definition of liberty (it doesn't mean just freedom)
\cup is commutative
Chapter 16 Fast Freeze. 103
inequalities: < and >
how to eat pizza after eating a quart of ice cream homogenized milk why we use soap cryogenics the difference between liquid and superfluid graph paper for those with lots of casual cash
Chapter 17 Joe and Ice Cream 109
what protein and calcium are good for subtracting ounces from quarts expressing remainders as fractions nothing physical is infinite
Chapter 18 Fred Orders a Pizza. 115
changing ounces to pounds and ounces a pizza without calories changing seconds into minutes and seconds
Chapter 19 Sugar. 121
to be jealous and to covet five gallons of Sluice each day making estimates using graphing
Index. 125

Chapter One Sunshine

Fred's sleeping bag smelled good. Hanging it out on a tree in the Kansas air and sunshine was a good thing. Fred never knew that you were supposed to do something with a sleeping bag besides just sleep in it.

Fred owned an 85 -year calendar. Since he was five years old, that calendar would last until he was 90 . At that point, he imagined he would buy another calendar.

$\quad 5$
$+\quad 5$
90

He had owned his sleeping bag for four years. Airing out his sleeping bag every four years seemed like a great
 idea. He was now five years old. He would air it out when he was 9 . Then when he was 13 . Then $17,21,25,29$, etc.

He wrote "air out sleeping bag" on every fourth year of his 85 -year calendar. Then he wouldn't forget.

Fred flossed his teeth every evening, so that was easy to remember. He also easily remembered, "Six times eight is 48, and that is
really great." (One use of poetry is to help people remember things. "In fourteen nintytwo, Columbus sailed the ocean blue.")

But when something happens only once every four years, the safest thing to do is write it down so you won't forget it.

Fred had read a lot of books. He knew a lot about math, history, poetry, science, art, geography, vexillology (the study of flags), Shakespeare, the Bible, economics, and beekeeping. But he had never read a book about sleeping bags.

Fred Didn't Know ...

1. He might not fit into his three-foot sleeping bag when he turned 13 .
2. If you sleep in the same sleeping bag every night for twenty or thirty years, it just might wear out.
3. Kids' sweat and adults' sweat are different.* Many adults air out their sleeping bags every morning rather than quadrennially (quad-DREN-knee-al-lee-once every four years).
[^1]An 85 -year calendar is hard to find in most stationery stores.* (An understatement.) One reason is that if you sell 85 -year calendars, you will probably never have repeat customers.

Another reason is that 85 -year calendars are pretty thick. They might be hard to hang on the wall.

How thick? How many months would be in an 85 -year calendar.** There are 12 months in a year. Do we add, subtract, multiply, or divide? That's always the big question in arithmetic.

> If you don't know whether to add, subtract, multiply or divide, first restate the problem with really simple numbers.

Using really simple numbers-suppose there are 4 months in a year and we have a twoyear calendar. Even without thinking, we know that would be 8 months. How did we get that? We multiplied.

So with an 85 -year calendar and 12 months in a year, we need to multiply.

[^2]85
$\begin{array}{r} \\ \times \quad 12 \\ \hline\end{array}$

We've never done this before.
It is multiplying by a twodigit number.
$12=10+2$
It is multiplying by 2 and multiplying by 10 .

Here's how it's done . . .

1 85 $\times \quad 12$	First, you multiply by 2. That we have seen before.
170	
85	
$\times \quad 12$	
170	
85	Next, we multiply by
the 1. (Since it's really	
10, and not 1, we move	
the answer over one	
space to the left.)	

And then just total things up. 85
85
$\times 170$
$\frac{85}{1020}$
There are 1,020 months in an 85 -year calendar. There are 1,020 pages in an 85 -year calendar.

One thousand, twenty pages!

Your Turn to Play

1. I buy my paper by the ream.

One ream $=500$ sheets. How many sheets would be in two reams of paper?

2. A ream of paper is about 5 cm thick. (I just measured it.) How thick would 2 reams be?
3. A ream of paper is about 2 inches thick. (I just measured it with the other side of my ruler.) How thick would 2 reams be?

More people in the world understand 5 cm than understand 2 inches.

Centimeters (cm) are part of the metric system. In the metric system (meters, liters, grams) everything is done by tens. For example, a centimeter is onehundredth of a meter.

In the imperial system (feet, gallons, pounds) nothing is predictable.
36 inches $=3$ feet $=1$ yard
8 pints $=4$ quarts $=1$ gallon 16 ounces $=1$ pound
12 troy ounces = 1 troy pound

A pound of hamburger weighs more than a pound of gold.
(Gold is measured in troy ounces.)

By multiplication: 500

$$
\begin{array}{r}
\times \quad 2 \\
\hline 1000
\end{array}
$$

There are 1,000 sheets of paper in two reams.
2. By addition: $5 \quad$ By multiplication: 5

$$
\frac{+5}{10} \quad \frac{\times 2}{10}
$$

3. Two reams would be four inches.

A Row of Practice. Do the whole row before you look at the answers.

48	748	78	47
$\begin{array}{r} \\ +75 \\ \hline\end{array}$	-9	$\times 2$	+13
123	739	156	141
			47

"But, but, but . . ." she sputtered.

[It looks like we have run out of room. This is where the index of the book is supposed to start. We'll continue, I promise, right here in the next book.]

Ondex

85-year calendar 13
ABCDEFG 70, 71, 73
area of a rectangle . . . 83, 84, 113
bar graphs 31
bibelots 25
big question in arithmetic . . . 15, $42,72,76,120$
borrowing one. 26
brass braces 113
capitalization in closing
salutations 34
cardinality of a set 59
category theory, linear functionals, homeomorphisms 86
changing the scale on a graph
. 93
Chico Marx 86
codomain 95
collinear points 90
commutative law of union
converting ounces to pounds and ounces 115
converting seconds to minutes and seconds 119, 120
counting back the change
98-102, 113
counting possible combinations . . . 44, 47, 59, 64, 65, 116
covet-a definition.. 121
cryogenics 107
Cyprus on the map 56
division.. 67, 72, 90, 102
division by two-digit numbers 120
domain . 95
drops, teaspoons, tablespoon, ounces, cups, quarts, gallons 70
elapsed time . . 39, 41, 45, 47, 64
empty set 60
estimating answers 116
examples of infinite sets 111
explicit statements 61
exponents 41, 42
expressing remainders as
\quad fractions 110
first coordinate 40, 74
flavors of ice cream 56
forest resources in the U.S. . . . 26

Ondex

formal letters 33, 34
getting ice in the summer in Kansas in 1843 69
graph paper 108
graphing an ordered pair 74,
$75,88,93,123$
Greek alphabet 60
homogenized milk 106
Hooke's Law 89
hyperbole 28
Iberian Peninsula 62
ibex 62
ice cream eating taught poorly 84
imperial system 17
implicit statements 57
inequalities 103
Joe's stomach is not infinite 111
KKKKK 58, 59
liberty is not the same as freedom101
literally true 52
m and cm don't require periods78
maps and artists 49
maps and cheese lovers 50
maps and historians of literature51
maps and mathematicians 50
maps and war historians 50
Marx Brothers' movie . . .86, 124
memory poem for 6×6 21
memory poem for 6×7 54
memory poem for 6×8 21
memory poem for 6×9 51
metric system 17, 66
Michelangelo 80
multiplying by a hundred 114
multiplying by a two-digit
number 16
numerals 42
ordered pairs 40, 74
parking on the sidewalk-whyyou shouldn't76
peninsulas 62
perimeter when not all the dimesions are not on the map 82-84
personal letters 34, 35
Pizza Buttons. 97-100
plotting points 93
poetry to help remember things 14
polishing leather shoes 45
promised land vs. Wisconsin 51
pronouncing French words thatend in t25
quadrennially 14
ream $=500$ sheets 17, 28
reverie 55
samplers 75, 76
seat belts 73, 74
second coordinate 40, 74
seconds, minutes, hours in the metric system 66
sigma notation
23, 24, 30, 47, 53
slope of a line 89
Sluice-in-the-Home 122, 123
special delivery emails 37

Ondex

Stanley Anthony-the story of his name 79, 80
subtracting centimeters from meters 77
subtracting feet from miles . . . 77
subtracting feet from yards . . 76,
subtracting inches from feet and inches 53
subtracting minutes from hours 48
subtracting ounces from gallons 77
subtracting ounces from pounds 26, 35, 77
subtracting ounces from quarts
superfluid is different than liquid 107
troy ounces 17
why math was invented . . .82, 83
why Stan couldn't fly 38
why the times sign is not used in algebra 44
why we use soap 106
x-coordinate 93
y-coordinate 93

[^0]: * You can't get a Nobel prize in mathematics. Alfred Nobel, who lived in the 1800s, made his fortune in explosives. He was a practical sort of fellow. In his will, he established annual prizes in five areas: Physics, Chemistry, Medicine, Literature, and Peace. One story says that Nobel didn't think math was a practical subjectsomething you would ever use in everyday life.

 It is an established fact that Alfred Nobel never read any of the Life of Fred series in which Fred experiences situations in his everyday life which require mathematics. Instead of Alfred Nobel prizes, there should be Fred Nobel prizes.

 The Fields Medal isn't awarded annually, but quadrennially (a word you will encounter several times in this book). It is sometimes called "the Nobel Prize of Mathematics." On one side of the medal is a picture of Archimedes and his words: Transire sum pectus mundoque potiri. This is slightly weird since Archimedes didn't speak Latin. If your knowledge of Latin is like that of Archimedes, I will translate: Rise above yourself and grasp the world. Mathematics does a lot of world-grasping.
 ** These are all covered in Life of Fred: Ice Cream.

[^1]: * This is covered in more detail in Life of Fred: Pre-Algebra 1 with Biology

[^2]: * Stationery (with an e) means writing paper and envelopes. Stationary (with an a) means not moving.

 How can you remember which is which? One way is to remember that envelopes are stationery.
 ** You may have also noticed that calendar is spelled calendAr. English is strange. The way I remember that it is . . . I can't remember how I remember that. I just do.

